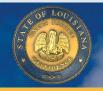
LABI 2010 VOTING RECORD

INTRODUCTION

The 2010 Regular Session was for the most part a good one for Louisiana businesses. Tax increases are constitutionally prohibited during regular sessions in even-numbered years, so at least one toxic issue was off the table – for now, anyway. However, there were plenty of dangerous bills floating about as LABI once again led the fight to protect businesses from unions, trial lawyers, and government.

Several measures supported by LABI became law. One principal goal this session was to obtain a greater measure of fairness for businesses in their dealings with local governments. Legislation that addresses unfair arbitrary tax assessments and equalizes the treatment of attorney fees in tax disputes was enacted, as was legislation establishing qualifications and professional standards for local contract auditors. Also, a number of important educational reforms that were pushed by LABI and the Jindal administration passed, including a bill to clearly define the proper roles of school boards and superintendents and legislation that will include student improvement as part of teacher evaluations

Another priority this session was to stop any attempts to repeal or water down prior civil justice reforms, and LABI successfully opposed bills that would have increased business exposure to lawsuits.


Apparently adhering to the idea that one should "never let a crisis go to waste," some lawmakers tried to use the Gulf oil spill disaster as the impetus for passing legislation damaging to business. SB 731, supported by the Attorney General, trial lawyers and the Jindal administration, would have allowed the AG to hire outside attorneys on a contingency fee basis to pursue class action lawsuits on behalf of the state, and the targets of these lawsuits would have been Louisiana businesses. The bill was derailed when the Senate President refused to accept amendments adopted by the House that put a reasonable cap on attorney fees and clearly restricted the bill's reach to only damages resulting from the Deepwater Horizon oil spill. Another bill that tried to take advantage of the oil spill crisis – this one attempting to re-impose punitive damages – was overwhelmingly

defeated in the Senate, as was the latest incarnation of the "processing" tax.

SB1 – a constitutional amendment passed by the Senate and part of the Governor's legislative package - threatened fiscal reforms that were added to the Constitution in the 1990's to protect taxpayers from unbridled state spending in the "boom years" and the inevitable subsequent call for tax increases to maintain that level of spending during the "busts." Chairman Jim Fannin (D, Jonesboro) was instrumental in amending SB1 in the House Appropriations Committee to remove provisions that would have greatly undermined the integrity of the Budget Stabilization Fund. Although the Jindal administration did not oppose these changes in House committee, no attempt was made to move the bill any further. While this issue didn't receive much press, it represents an important victory for taxpayers who expect and demand fiscal responsibility from their state government.

Please take the time to evaluate your legislators' performance, using the Voting Record as a guide. It is important that your representatives and senators know how you feel. If you are pleased with their votes, by all means tell them, and encourage them with your support where you can. If you are not happy with the way they voted, then have that discussion as well. Remember, legislators will be hearing from a long line of interest groups, from trial lawyers and unions to local government officials and public employees, whose interests are often directly opposite yours. They need to hear from you as well.

We are now three-fourths of the way through the current term, and over the course of a term, many critical votes will be cast on legislation important to business people across Louisiana. Throughout the cycle of regular, fiscal, and special sessions, voting records fluctuate – sometimes radically – depending on the issues. Because voting records do fluctuate from session to session, no single year's voting record should be considered in isolation; the average over the entire term best reflects the level of a legislator's support for a better business climate in this state.

HOUSE VOTES

SCHOOL BOARD REFORM

HB 410, Carter – 410 would have called for a local option vote to be placed on the ballot of the November 2, 2010 federal election where voters would determine if they should limit the term limits of their local school board members to three four-year terms. Currently, only Jefferson and Lafayette Parishes have enacted term limits on their school boards. In spite of the Louisiana School Boards Association's strong lobbying effort against HB 410, the majority of House members supported the bill. It overwhelmingly passed the House but succumbed to local politics in the Senate and Governmental Affairs Committee, where it was killed by senators with strong ties to their local boards.

Had HB 410 been enacted and voters adopted local school board member term limits, the limitation would have begun for members elected on or after January 1, 2010. HB 410 could have been a critical part of the solution to Louisiana's challenges in public education.

Louisiana's Constitution provides that local school boards are created by the State Legislature—La. Const. Art. VIII, sect. 9.(A): "The legislature shall create parish school boards and provide for the election of their members." This gives the Legislature broad authority over school boards, distinguishing them from other local governmental entities.

LABI supported this legislation because 1) It would have made local school board terms consistent with BESE and the Legislature; 2) It would have helped to keep local school boards fresh and effective; 3) It would have fostered bringing new citizens and stakeholders into public education; and 4) It would have helped keep school boards mission-focused, as members would have 12 years – grades 1-12 for a student – to impact how boards support efforts to improve academic achievement.

Louisiana has one of the highest rated school accountability programs in the nation and, in the

past decade, the Legislature has appropriated millions of dollars for dozens of reforms including higher teacher pay and professional development; technology; early childhood education; technical skills training; alternative options for at-risk students; higher per pupil funding in the MFP; and many others. However, the state still lags at or near the bottom in student achievement. True reform can only take place locally, in the classroom. Without local understanding, support and implementation, reforms may falter, and reform is vital if we ever hope to turn around Louisiana's dismal national academic rankings.

How the House Voted

A vote FOR final passage was a vote WITH LABI. The bill passed, 77-21-5.

LOCAL SALES TAX – ATTORNEY FEES

HB 666, Nowlin, - Under current law, local sales tax laws limit the award of attorney fees to only the tax collector. As a result, a taxpayer may not be awarded attorney fees even if he is successful in the tax case. Fairness dictates that attorney fee provisions should apply equally to the tax collector and the taxpayer, and HB 666 accomplishes this goal. HB 666 provides that the prevailing party in a sales tax case shall be awarded attorney fees, unless the position of the non-prevailing party is substantially justified. This is similar to the standard in place with the Internal Revenue Service and other states. In a debt collection situation where the taxes are due and final, the tax collector will still be able to recover attorney fees as well.

How the House Voted

A vote FOR final passage was a vote WITH LABI. The bill passed, 94-1-8.

LOCAL SALES TAX - ARBITRARY ASSESSMENTS

HB 667, Nowlin – This bill restricts the use of arbitrary assessments by local sales tax collectors. Our sales tax laws, under specific, limited circumstances, permit the tax collector to assess a taxpayer with an "estimate" of the tax due, rather than by a full audit. This limited exception for "estimates" only applies to taxpayers that have failed to file a tax return, or filed a grossly incorrect or fraudulent return, or who intend to flee the taxing jurisdiction. Compliant taxpayers that have filed tax returns should not be subject to arbitrary estimated assessments. HB 667 provides remedies to those taxpayers that have been arbitrarily assessed by estimated assessment.

How the House Voted

A vote FOR final passage was a vote WITH LABI. The bill passed, 94-0-9.

LOCAL SALES TAX - CONTRACT AUDITORS

HB 845, Nowlin - Under current law, local sales tax collectors are authorized to hire private contract auditors for the purpose of performing sales and use tax audits. However, there are no protections in place to assure taxpayers that these private contract auditors have the necessary qualifications and expertise to perform these functions. Additionally, while these private contract auditors are bound by confidentiality requirements, the parameters and specific safeguards of such requirements were ill-defined. The purpose of HB 845 was to (1) establish minimum standards for the educational, professional certification, and experience levels for contract auditors, as well as (2) protect taxpayer confidentiality, records, and related information.

How the House Voted

A vote FOR final passage was a vote WITH LABI. The bill passed by, 100-0-3.

SCHOOL BOARD MEMBER INTERFERENCE

HB 942, Carter – Prohibits local school board members from acting in an individual capacity to compel, coerce or interfere with personnel decisions. It also requires a two-thirds vote to terminate a local superintendent's contract prior to the expiration of the contract term.

LABI supported this legislation to ensure that school boards are focused on student learning rather than personnel actions better left to a superintendent contracted to make those types of decisions. Further, it frees board members to dedicate their service to policies that improve student learning instead of getting bogged down in a school district's day-to-day operations. Additionally, how can a board hold a superintendent accountable for results if he or she is restricted from putting together his or her own team? Finally, the two-thirds vote to fire a superintendent provides some "cover" from local politics for superintendents who may be trying to work in the best interest of children but may get in the crosshairs of a local member who is more interested in controlling personnel actions and contracts.

How the House Voted

A vote FOR final passage was a vote WITH LABI. The bill passed, 76-16-11.

VALUE-ADDED TEACHER EVALUATIONS

HB 1033, Hoffmann – Injects objective criteria into teacher evaluations. Known as the "value added" bill, it requires annual formal teacher evaluations with *student academic growth* comprising 50% of those evaluations. The remaining 50% would be based on principal observations, etc.

HB 1033 was controversial due to the use of student achievement comprising a portion of a teacher's evaluation, which now must be conducted annually, rather than every three years, as is current law. The bill does not affect teacher compensation, which is determined at the local level. "Valueadded" relies on student information such as socioeconomic background, exceptionalities, et al. to predict how much a student should learn in one year

compared to what is actually learned. For teachers in grades and subjects not using standardized tests, BESE would require other student growth measures and teachers will be evaluated under the current system. Value-added would be phased-in over two years. This Act is a "game changer" that will maintain Louisiana as a leader of the national education reform movement.

How the House Voted

A vote FOR final passage was a vote WITH LABI. The bill passed, 68-26-9.

STATE RETIREMENT REFORM

HB 1337, Robideaux – Requires that new hires in the top four state retirement systems shall receive benefits when they become 60 years old with at least 10 years of service. Currently the system allows individuals to receive benefits at any age after 30 years of service. The bill also increases employee contribution rates and pegs benefit levels to the five highest years of service rather than just three. These changes will apply to state employees hired on or after January 1, 2011.

In the mid-1980s, the Legislature decided to refinance a ballooning pension debt over a forty year period. Unfortunately the Legislature continued to award generous state employee pension benefits without a proper funding mechanism. Before the Legislature refinanced the debt, there was a push to switch from a defined benefit plan to a defined contribution plan for all new hires in state government. But with the refinancing of the debt, momentum for reforming state pensions quickly vanished.

Now in 2010, we are staring into the pension debt abyss yet again. Many legislative solutions were filed this year to keep the taxpayer-supported retirement systems fiscally sound. Legislation was again proposed to put all new employees under a 401k style plan. While adopting a defined contribution plan for new hires will do little to solve the 17 billion dollar unfunded accrued liability problem taxpayers currently face, it would relieve taxpayers of any further pension obligations going forward. Unfortunately, that legislation did not get any traction.

Instead, a more subtle change was proposed through HB 1337. This bill requires that new employees pay a higher contribution rate and sets their retirement at 60 years of age. Even though this new approach only affects new hires and moves retirement age closer to the national average, the public labor unions lobbied hard against the bill throughout the process.

How the House Voted

A vote FOR final passage was a vote WITH LABI. The bill passed, 60-34-9.

RED TAPE REDUCTION ACT

HB 1368, Jane Smith – This landmark Act authorizes BESE to exempt a local school district from certain laws, rules, policies and regulations following a local school board's request for a waiver accompanied by a proposal for increasing the quality of instruction and academic achievement and achieving those performance objectives. An amendment put on the bill further requires that 50% of teachers in a school would have to approve the waiver being requested prior to submission to BESE. During the waiver period, a school could not be taken over by the state and placed into the Recovery School District.

For years, local education officials have complained that burdensome state mandates tie their hands at the local level and, if they had the same flexibility as charter school operators, they could begin to operate more efficiently and citizens would see results sooner. HB 1368 was the answer to those complaints. With the passage of this legislation, if they choose, local boards could operate some or all of their schools in a manner similar to charter schools. However, the bill is voluntary; no district would be mandated to apply for a waiver. Since tenure is included in the list of items that could be waived, it drew the ire of teacher unions, which launched a massive negative campaign against the bill and its author and filed suit in state court as soon as the bill was signed by the governor.

How the House Voted

A vote FOR final passage was a vote WITH LABI. The bill passed, 68-20-15.

SENATE VOTES

BUDGET STABILIZATION FUND

SB 1 (Constitutional Amendment), Chaisson – If passed in the form considered by the Senate, this bill would have significantly reversed the fiscal reforms of the 1990s by allowing the use of one-time monies and volatile excess mineral revenues to balance the budget for recurring expenses. SB 1 would have substantially impaired the long-term viability of the Budget Stabilization Fund (BSF), as well as abandoned the core principles for the establishment of the BSF – which was to deposit excess mineral revenues into the BSF to protect taxpayers by limiting the ability of the legislature to appropriate these dollars for recurring expenses.

SB 1, as amended in the Senate Finance committee, would have: (1) changed the trigger point for accessing the BSF to include a decrease in federal funds; (2) led to more withdrawals and less deposits into the BSF, which over time would have negatively impacted the long-term viability of the BSF; (3) diverted all deposits (including excess mineral revenues and non-recurring revenues) from the BSF for FY10 (retroactively), FY11, and FY12, as well as during any year in which the BSF was used; (4) removed the flexible cap for the BSF (4% of state revenue receipts), and replaced it with a permanent cap of \$1 billion in perpetuity – thus permanently weakening the value of the BSF for future generations; and (5) eliminated the historical protection from volatile mineral revenues by removing the \$850 million limit for "excess" mineral revenues, and replacing it with either a 5% or 10% threshold, which would have decreased the mineral revenues flowing into the BSF in excess of the current \$850 million threshold. This change also would have taken monies away from the state general fund each year (for deposit into the BSF) in which mineral revenues were less than \$850 million.

SB 1 did not create a plan of action for dealing with the current budget issues. Instead, after these one-time trust fund monies were expended and no longer available, there would have been additional pressure for new and increased taxes to balance the

recurring budget to off-set the loss of these one-time monies.

How the Senate Voted

A vote AGAINST final passage of the bill was a vote WITH LABI. The bill passed, 30-7-2, with 26 votes required for passage.

PROCESSING TAX

SB 432, (Constitutional Amendment) Marionneaux – Would have authorized the Legislature to levy a tax on hydrocarbon processing and would have specified that the proceeds be dedicated to road construction and repairs, coastal protection, and education.

Louisiana's Constitution currently limits taxation of oil, gas and other minerals to a severance tax and prohibits any other form of taxation of these natural resources. SB 432 would have removed the severance tax on natural gas and oil and would have allowed the Legislature to replace that tax with a tax on the processing of hydrocarbons in the state. There was no limitation on the tax rate, definition of "processing," or any other details about the proposed new tax, although the author publicly stated that it would annually yield over \$1.3 billion in net tax revenues.

LABI's primary objection to a hydrocarbon processing tax is that it would penalize and tax every Louisiana consumer—residential, commercial, and industrial—for consuming oil products, natural gas, and/or electricity generated with natural gas. Louisiana consumers would have no option but to purchase the taxable products, and the tax could not be passed on to out-of-state consumers. Neither could this tax on "foreign oil" be passed back to the countries or governments where the oil was produced.

How the Senate Voted

A vote AGAINST final passage was a vote WITH LABI. The bill failed, 6-31-2, with 26 votes required for passage.

PUNITIVE DAMAGES

SB 547, Marionneaux – As introduced, would have authorized the awarding of unlimited, general punitive damages.

In 1996, as part of a major tort reform package, the legislature repealed allowing the awarding of punitive damages in cases involving the transportation, handling and storage of hazardous substances. Since that time, this reform has received very few serious legislative challenges.

SB 547 was substantially amended by the author in the Senate Judiciary A Committee to apply to only specific business cases. As the bill was passed to the Senate, it would have involved the "drilling, equipping, operating, or producing of an oil or gas well or in the commercial storage, handling, or transportation of oil, gas, product of oil or gas, or hazardous or toxic substance."

How the Senate Voted

A vote AGAINST final passage was a vote WITH LABI. The bill failed, 4-30-5.

ATTORNEY GENERAL CONTINGENCY FEE ATTORNEYS

SB 731, Chaisson – As amended in Senate committee, would have authorized the attorney general to enter into contingency fee contracts to retain private counsel to represent the state in any litigation. LABI discontinued its opposition after the House committee and floor amended SB 731 to limit the contracts to the Deepwater Horizon event and to limit the amount and scope of those contracts. When the conference committee language expanded the bill to enlarge the amount and expand the scope of the contracts, LABI renewed its opposition and opposed adoption of the conference committee report.

LABI's historical opposition to contingency fee contracts for auditing and legal services was severely tested by SB 731 that would have allowed the attorney general to hire outside lawyers under contingency fee contracts. Not only do contingency fee contracts encourage litigation, if they are negotiated with the attorney general, any class or mass actions resulting with be outside the limitations of

the federal Class Action Fairness Act which requires the suits to be filed in federal rather than state court.

The united business community continued its long-standing opposition to the concept as the bill made its way from the Senate to the House. LABI and the other organizations finally agreed to the administration's very limited approach for the Deepwater Horizon instance only, with a \$50 million cap on the awards, and excluded certain other damages already addressed by state and federal law. Unfortunately, Senate President Joel Chaisson did not agree with the limited approach and attempted to pass an expansive bill. That battle raged until the closing minutes of the session when the Senate gave way to Sen. Chaisson, but time ran out, and the House never had an opportunity to once again reject the Chaisson plan.

How the Senate Voted

A vote AGAINST final passage was a vote WITH LABI. The bill passed, 21-16-2.

A vote AGAINST adoption of the conference committee report was a vote WITH LABI. The Senate adopted the report, 25-14-0. There was no House vote on the conference committee report.

LOCAL SALES TAX – ATTORNEY FEES

HB 666, Nowlin – Under current law, local sales tax laws limit the award of attorney fees to only the tax collector. As a result, a taxpayer may not be awarded attorney fees even if he is successful in the tax case. Fairness dictates that attorney fee provisions should apply equally to the tax collector and the taxpayer, and HB 666 accomplishes this goal. HB 666 provides that the prevailing party in a sales tax case shall be awarded attorney fees, unless the position of the non-prevailing party is substantially justified. This is similar to the standard in place with the Internal Revenue Service and other states. In a debt collection situation where the taxes are due and final, the tax collector will still be able to recover attorney fees as well.

How the Senate Voted

A vote FOR final passage of the bill was a vote WITH LABI. The bill passed, 30-0-9.

LOCAL SALES TAX - ARBITRARY ASSESSMENTS

HB 667, Nowlin – This bill restricts the use of arbitrary assessments by local sales tax collectors. Our sales tax laws, under specific, limited circumstances, permit the tax collector to assess a taxpayer with an "estimate" of the tax due, rather than by a full audit. This limited exception for "estimates" only applies to taxpayers that have failed to file a tax return, or filed a grossly incorrect or fraudulent return, or who intend to flee the taxing jurisdiction. Compliant taxpayers that have filed tax returns should not be subject to arbitrary estimated assessments. HB 667 provides remedies to those taxpayers that have been arbitrarily assessed by estimated assessment.

How the Senate Voted

A vote FOR final passage was a vote WITH LABI. The bill passed, 32-0-7.

LOCAL SALES TAX - CONTRACT AUDITORS

HB 845, Nowlin - Under current law, local sales tax collectors are authorized to hire private contract auditors for the purpose of performing sales and use tax audits. However, there are no protections in place to assure taxpayers that these private contract auditors have the necessary qualifications and expertise to perform these functions. Additionally, while these private contract auditors are bound by confidentiality requirements, the parameters and specific safeguards of such requirements were ill-defined. The purpose of HB 845 was to (1) establish minimum standards for the educational, professional certification, and experience levels for contract auditors, as well as (2) protect taxpayer confidentiality, records, and related information.

How the Senate Voted

A vote FOR final passage was a vote WITH LABI. The bill passed, 33-0-6.

SCHOOL BOARD MEMBER INTERFERENCE

HB 942, Carter – HB 942 prohibits local school board members from acting in an individual capacity to compel, coerce, or interfere with personnel decisions. It also requires a two-thirds vote to terminate a local superintendent's contract prior to the expiration of the contract term.

LABI supported this legislation to ensure that school boards are focused on student learning rather than personnel actions better left to a superintendent contracted to make those types of decisions. Further, it frees board members to dedicate their service to policies that improve student learning instead of getting bogged down in a school district's dayto-day operations. Additionally, how can a board hold a superintendent accountable for results if he or she is restricted from putting together his or her own team? Finally, the two-thirds vote to fire a superintendent provides some "cover" from local politics for superintendents who may be trying to work in the best interest of children but may get in the crosshairs of a local member who is more interested in controlling personnel actions and contracts.

How the Senate Voted

A vote FOR final passage was a vote WITH LABI. The bill passed, 22-13-4.

VALUE-ADDED TEACHER EVALUATION

HB 1033, Hoffmann – This Act injects objective criteria into teacher evaluations. Known as the "value added" bill, it requires annual formal teacher evaluations with *student academic growth* comprising 50% of those evaluations. The remaining 50% would be based on principal observations, etc.

HB 1033 was controversial due to the use of student achievement comprising a portion of a teacher's evaluation, which now must be conducted annually, rather than every three years, as is current law. The bill does not affect teacher compensation, which is determined at the local level. "Value-added" relies on student information such as socio-economic background, exceptionalities, et al. to predict how much a student should learn in

one year compared to what is actually learned. For teachers in grades and subjects not using standardized tests, BESE would require other student growth measures and teachers will be evaluated under the current system. Value-added would be phased-in over two years. This Act is a "game changer" that will maintain Louisiana as a leader of the national education reform movement.

How the Senate Voted

A vote FOR final passage was a vote WITH LABI. The bill passed 22-17-0.

STATE RETIREMENT REFORM

HB 1337, Robideaux – Requires that new hires in the top four state retirement systems shall receive benefits when they become 60 years old with at least 10 years of service. Currently the system allows individuals to receive benefits at any age after 30 years of service. The bill also increases employee contribution rates and pegs benefit levels to the five highest years of service rather than just three. These changes will apply to state employees hired on or after January 1, 2011.

In the mid-1980s, the Legislature decided to refinance a ballooning pension debt over a forty year period. Unfortunately the Legislature continued to award generous state employee pension benefits without a proper funding mechanism. Before the Legislature refinanced the debt, there was a push to switch from a defined benefit plan to a defined contribution plan for all new hires in state government. But with the refinancing of the debt, momentum for reforming state pensions quickly vanished.

Now in 2010, we are staring into the pension debt abyss yet again. Many legislative solutions were filed this year to keep the taxpayer-supported retirement systems fiscally sound. Legislation was again proposed to put all new employees under a 401k style plan. While adopting a defined contribution plan for new hires will do little to solve the 17 billion dollar unfunded accrued liability problem taxpayers currently face, it would relieve taxpayers of any further pension obligations going forward. Unfortunately, that legislation did not get any traction.

Instead, a more subtle change was proposed through HB 1337. This bill requires that new employees pay a higher contribution rate and sets their retirement at 60 years of age. Even though this new

approach only affects new hires and moves retirement age closer to the national average, the public labor unions lobbied hard against the bill throughout the process. Although the bill failed to garner the requisite 20 votes in the Senate during its first full floor hearing, it was passed on reconsideration.

How the Senate Voted

A vote FOR final passage was a vote WITH LABI. The bill failed, 17-16-6.

A vote FOR final passage on reconsideration was a vote WITH LABI. The bill passed, 22-10-7.

RED TAPE REDUCTION ACT

HB 1368, Jane Smith – This landmark Act authorizes BESE to exempt a local school district from certain laws, rules, policies and regulations following a local school board's request for a waiver accompanied by a proposal for increasing the quality of instruction and academic achievement and achieving those performance objectives. An amendment put on the bill further requires that 50% of teachers in a school would have to approve the waiver being requested prior to submission to BESE. During the waiver period, a school could not be taken over by the state and placed into the Recovery School District.

For years, local education officials have complained that burdensome state mandates tie their hands at the local level and, if they had the same flexibility as charter school operators, they could begin to operate more efficiently and citizens would see results sooner. HB 1368 was the answer to those complaints. With the passage of this legislation, if they choose, local boards could operate some or all of their schools in a manner similar to charter schools. However, the bill is voluntary; no district would be mandated to apply for a waiver. Since tenure is included in the list of items that could be waived, it drew the ire of teacher unions, which launched a massive negative campaign against the bill and its author and filed suit in state court as soon as the bill was signed by the governor.

How the Senate Voted

A vote FOR final passage was a vote WITH LABI. The bill passed, 23-14-2.

Voting Record Criteria

There are certain rules that apply consistently to LABI voting records and to LABI's use of those records:

- Only KEY business votes are included in the record. Only bills on which LABI has taken a clear, broad-based position are considered.
- ✓ A vote may be on an amendment or procedural motion, as well as on final passage, if that vote was crucial to the fate of the bill.
- ✓ Because of factors such as committee action or amendments, the inclusion of a vote on a bill in one house doesn't necessarily mean that it will be a record vote in the second house.
- ✓ Votes are weighted according to their importance to the business community. See voting record chart for specific point values.
- ✓ Each term stands alone. Every legislator has an equal opportunity for a good four-year record, despite historical voting patterns.
- ✓ The annual and cumulative voting averages are based upon the number of points actually earned, compared to the number of points that could have been earned over the period.
- ✓ Legislators are not penalized in LABI voting records for absences due to hospitalization or immediate family illness or death, nor for abstentions due to conflicts of interest.
- ✓ The voting record is based on votes as recorded in the Official Journals of the House and Senate.

2010 Regular Legislative Session

2010	Kec	Ju	lai		eg	12	Iai	LIV	C	J E	551011
H O U S E	HB 410 School Board Reform. Final Passage	HB 666 Local Sales Tax - Attorney Fees. Final Passage	HB 667 Local Sales Tax - Arbitrary Assessments. Final Passage	HB 845 Local Sales Tax - Contract Auditors. Final Passage	HB 942 School Board Member Interference. Final Passage	HB 1033 Value-Added Teacher Evaluations. Final Passage	HB 1337 State Retirement System Reform. Final Passage	HB 1368 Red Tape Reduction Act. Final Passage	2010 Voting Percentage	2008-2010 Cumulative Voting Percentage	H O U S E
Abramson	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{4}$	1/4	100	83	Abramson
Anders	$\frac{1}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{a}{\frac{1}{2}}$	1 1	$\frac{0}{\frac{1}{2}}$	0	$\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{array}$	69 81	62 48	Anders
Armes Arnold	u a-	1 2	1	$\frac{\overline{2}}{\frac{1}{2}}$	1	$\frac{\overline{2}}{\frac{1}{2}}$	$\frac{1}{4}$	4 1 4	88	48 64	Armes Arnold
Aubert	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$ $\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	0	a-	88	80	Aubert
Badon, Austin	$\frac{1}{2}$	1/2		$\frac{1}{2}$	1	$\frac{1}{2}$	0	$\frac{1}{4}$	94	78	Badon, Austin
Badon, Bobby	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	1 4	a-	94	63	Badon, Bobby
Baldone Barras	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{1}{2}$	$\begin{array}{c c} \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$ $\frac{\frac{1}{2}}{\frac{1}{2}}$	1 1	$\frac{0}{\frac{1}{2}}$	1 4 1 4	$\frac{\frac{1}{4}}{\frac{1}{4}}$	88 100	68 83	Baldone Barras
Barrow	2 a-		2 1 2	$\frac{2}{\frac{1}{2}}$	0	0	0	0	38	51	Barrow
Billiot	$\frac{1}{2}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	0	$\frac{1}{4}$	94	70	Billiot
Brossett	0	$\frac{1}{2}$	$\frac{1}{2}$	$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $	0	0	0	0	38	25	Brossett
Burford	$\frac{1}{2}$	$\frac{\frac{1}{2}}{1}$	$\frac{\frac{1}{2}}{1}$	$\frac{\frac{1}{2}}{1}$	1 1	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$0 \\ \frac{1}{4}$	$\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{array}$	94 100	79 86	Burford
Burns, Henry Burns, Tim	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	1 2	$\frac{\frac{1}{2}}{\frac{1}{2}}$	1	$\frac{\overline{2}}{\frac{1}{2}}$	4 1 4	4 1	100	80 79	Burns, Henry Burns, Tim
Burrell	a-	a-	$\frac{1}{2}$	$\frac{1}{2}$	a-	a-	0	0	25	39	Burrell
Carmody	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{\frac{1}{4}}{\frac{1}{4}}$	$\frac{\frac{1}{4}}{\frac{1}{4}}$	100	88	Carmody
Carter	1 2	1 2	1 1	1 2	1	1 2	1 4	1 4	100	83	Carter
Champagne Chandler	$\frac{1}{2}$ $\frac{1}{1}$	$\frac{\frac{1}{2}}{a}$	$\frac{\frac{1}{2}}{a}$	1	1 1	$\frac{\frac{1}{2}}{0}$	1 1	1 1	100 63	73 66	Champagne Chandler
Chaney	$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $	$\frac{1}{2}$	$\frac{1}{2}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	1	$\frac{1}{2}$	$\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{array}$	$\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{array}$	100	89	Chaney
Connick	$\frac{1}{2}$			$\frac{1}{2}$	1	$\frac{1}{2}$		1/4	100	68	Connick
Cortez	$\frac{1}{2}$	$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{1}{2}$	1	$\frac{1}{2}$	$\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{array}$	$\frac{1}{4}$	100	83	Cortez
Cromer	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1 2	1	0	1 1	0	81	77	Cromer
Danahay Dixon	0	$\frac{1}{2}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	1 1	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{\frac{1}{4}}{0}$	$\frac{\frac{1}{4}}{0}$	88 75	75 48	Danahay Dixon
Doerge	$\frac{1}{2}$	$\frac{2}{\frac{1}{2}}$	$\frac{2}{\frac{1}{2}}$	$\frac{2}{\frac{1}{2}}$	a-	0	0	$\frac{1}{4}$	56	57	Doerge
Dove	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	a-	a-	$\frac{1}{4}$	a-	56	49	Dove
Downs	$\frac{1}{2}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	1 4	1/4	100	86	Downs
Edwards Ellington	0	_		$\frac{1}{2}$	1	$\frac{1}{2}$	0	0	75 50	52	Edwards
Fannin	a- 0	$\frac{\frac{1}{2}}{a}$	$\frac{\frac{1}{2}}{a}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	0 1	$\frac{\frac{1}{2}}{\frac{1}{2}}$	a- - 1/4	a- 1/4	50 63	63 65	Ellington Fannin
Foil	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	1/4	1/4	100	85	Foil
Franklin	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	0	0	a-	75	58	Franklin
Gallot	0	$\frac{1}{2}$	1 2	$\frac{1}{2}$	a-	0	a-	0	38	42	Gallot
Geymann Gisclair	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	1 1	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{1}{4}$ $\frac{1}{4}$	$\frac{\frac{1}{4}}{0}$	100 94	72 70	Geymann Gisclair
Greene	$\frac{\overline{2}}{\frac{1}{2}}$	$\frac{\overline{2}}{\frac{1}{2}}$	$\frac{2}{1}$	$\frac{2}{1}$	1	$\frac{2}{1}$	1 4	$\frac{1}{4}$	100	72	Greene
Guillory	0	$\frac{1}{2}$	a-	$\frac{1}{2}$	1	$\frac{1}{2}$	1/4	1/4	75	66	Guillory
Guinn	0	$\frac{1}{2}$	1/2	1/2	0	0	0	$\frac{1}{4}$	44	66	Guinn
Hardy	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	1	$\frac{1}{2}$	$\frac{1}{4}$	a-	94	72	Hardy
Harrison Hazel	$\frac{\overline{2}}{2}$	$\frac{\overline{2}}{\frac{1}{2}}$		$\frac{\overline{2}}{\frac{1}{2}}$	a- 1	$\frac{1}{2}$	a- 1/4	$\frac{a}{\frac{1}{4}}$	50 100	59 77	Harrison Hazel
Henderson	0	$\frac{1}{2}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{1}{2}$	1	$\frac{\frac{2}{1}}{2}$	4 1 4	a-	81	57	Henderson
Henry	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	1/4	$\frac{1}{4}$	100	77	Henry
Hill	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	1 4 1	44	49	Hill
Hines Hoffmann	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	1	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{\frac{1}{4}}{0}$	$\frac{\frac{1}{4}}{\frac{1}{4}}$	100 94	80 85	Hines Hoffmann
Homann	$\frac{\overline{2}}{2}$	$\frac{\overline{2}}{\frac{1}{2}}$	1 2	$\frac{\overline{2}}{\frac{1}{2}}$	1	$\frac{\overline{2}}{\frac{1}{2}}$	0	4 1 4	94 94	85 75	Homann
Hutter	0	$\frac{1}{2}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{1}{2}$	0	0	0	0	38	61	Hutter
Jackson, Girod	$\frac{1}{2}$	$\frac{1}{2}$		a-	0	$\frac{1}{2}$	0	0	50	41	Jackson, Girod
Jackson, Micha		$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	0	1/4	94	66	Jackson, Michael
Johnson Jones, Rosalind	0	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	0 a-	0 a-	0 a-	0	38 38	41 38	Johnson Jones, Rosalind
Jones, Sam	$\frac{1}{2}$	$\frac{\overline{2}}{\frac{1}{2}}$	$\frac{2}{1}$	$\frac{\overline{2}}{\frac{1}{2}}$	a- 1	a- 0	a- 0	u a-	75	36 74	Jones, Sam
	z	2	2	2		-					

a- Was absent when LABI needed a "yes" vote, or the motion required only a majority or supermajority of those present and voting.

a° Was absent when LABI needed a "no" vote and the motion required a majority or supermajority of the elected members.

2010	Reg	ju	lar	L	eg	is	lat	tiv	e	Se	ssion
H	sform.	HB 666 Local Sales Tax - Attorney Fees. Final Passage	HB 667 Local Sales Tax - Arbitrary Assessments. Final Passage	HB 845 Local Sales Tax - Contract Auditors. Final Passage	ember ge	acher ge	HB 1337 State Retirement System Reform. Final Passage	HB 1368 Red Tape Reduction Act. Final Passage		oting	H O
	HB 410 School Board Reform. Final Passage	s Tax -	HB 667 Local Sales Tax - An Assessments. Final Passage	s Tax -	HB 942 School Board Member Interference. Final Passage	HB 1033 Value-Added Teacher Evaluations. Final Passage	iremer sage	Redu	ıtage	2008-2010 Cumulative Voting Percentage	Ü
U S	ool Bo	al Sale çe	al Sale . Fina	HB 845 Local Sales Tax Auditors. Final Passage	ool Bo	lue-Ad Final	HB 1337 State Retirem Reform. Final Passage	d Tape	2010 Voting Percentage	nmn)	C
2	HB 410 Schoe Final Passage	HB 666 Local Final Passage	7 Loc ments	5 Locars. Fi	2 Scho erence	33 Valations.	37 Sta n. Fin	HB 1368 Red Final Passage	oting/	2010 C ntage	S
E	HB41 Final	HB 66 Final	HB 66 Assess	HB 84 Audite	HB 94 Interf	HB 10 Evalua	HB 13 Reform	HB 13 Final	2010 \	2008-2010 Percentage	E
Katz Kleckley	$\begin{array}{c c} \frac{1}{2} \\ 0 \\ \end{array}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	a° 1	a °	1/4 a-	$\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{array}$	100 94	94 70	Katz Kleckley
LaBruzzo	$\frac{\frac{2}{1}}{2}$	a°	a°	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{4}$		100	82	LaBruzzo
LaFonta	$\frac{1}{2}$	a-	a-	a-	0	0	0	0	13	46	LaFonta
Lambert Landry	1 1	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	1 1	$\frac{\frac{1}{2}}{\frac{1}{2}}$	4 1	$\frac{\frac{1}{4}}{\frac{1}{4}}$	100 100	66 81	Lambert Landry
LeBas	$\frac{1}{2}$	0	$\frac{1}{2}$	+2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +	1	a-	14 14 14 14 14 14 14 14 14 14	a-	69	48	LeBas
Leger	1/2	$\frac{1}{2}$	a-	1/2	1	$\frac{1}{2}$	1 4	1/4	88	58	Leger
Ligi	$\frac{1}{2}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{\frac{1}{2}}{0}$	1 4	$\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{array}$	100	86	Ligi
Little Lopinto		2 a-	121212121212121212121212121212121212	1 1	1 1		4 1	4 1	75 88	75 73	Little Lopinto
Lorusso	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}$		$\frac{1}{2}$	$\frac{\frac{2}{1}}{2}$	1	$\frac{\frac{1}{2}}{\frac{1}{2}}$	4 1 4	a-	94	80	Lorusso
McVea	$\frac{1}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2	$\frac{1}{2}$	1	$\frac{1}{2}$	1/4	1/4	100	87	McVea
Mills	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	1 4 1	$\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{array}$	100	76	Mills
Monica Montoucet	1 1	1	1	1	1 1	1	0	0	100 88	71 63	Monica Montoucet
Morris	$\frac{1}{2}$	$\frac{2}{1}$	$\frac{2}{1}$	$\frac{2}{1}$	1	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	100	85	Morris
Norton	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	a-	38	48	Norton
Nowlin	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{\frac{1}{4}}{\frac{1}{4}}$	1 4	100	92	Nowlin
Pearson Perry	± 2 1	± 1	1	$\frac{1}{2}$	1 a°	0 a°	1 1 4	4 1	88 100	75 75	Pearson Perry
Ponti	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\$	2 a º	2 a º	$\frac{2}{\frac{1}{2}}$	1	$\frac{1}{2}$	4 a-	1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	92	83	Ponti
Pope	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	1	0	0	1/4	81	85	Pope
Pugh	$\frac{1}{2}$	$\begin{array}{c c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	1 1	$\frac{1}{2}$	1	1 2	1 4	1 4	100	80	Pugh
Richard Richardson	$\frac{\frac{1}{2}}{1}$	1	$\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	1 1	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \end{array}$	1 1	100 100	79 91	Richard Richardson
Richmond	$\frac{2}{\frac{1}{2}}$	2 1 2	2 a-	$\frac{2}{\frac{1}{2}}$	0	$\overset{2}{0}$	0	0	38	38	Richmond
Ritchie	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$	1	1/2	0	0	75	55	Ritchie
Robideaux	$\frac{1}{2}$		1 2		1	$\frac{1}{2}$	1 4	$\frac{1}{4}$	100	86	Robideaux
Roy Schroder	$\frac{\frac{1}{2}}{a}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	a- 1	$\frac{a}{\frac{1}{2}}$	0 a-	a- - 1/4	50 81	43 87	Roy Schroder
Simon	$\frac{a}{\frac{1}{2}}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{2}{1}$	1	$\frac{2}{1}$	$\frac{1}{4}$	1/4	100	75	Simon
Smiley	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	1/4	1/4	100	92	Smiley
Smith, Gary	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0	a -	0	38	39	Smith, Gary
Smith, Jane Smith, Patricia	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	1 1	$\frac{\frac{1}{2}}{0}$	$\frac{\frac{1}{4}}{0}$	1/4 a-	100 75	84 54	Smith, Jane Smith, Patricia
St. Germain	$\frac{2}{\frac{1}{2}}$	1/2	1/2	$\frac{2}{\frac{1}{2}}$	0	$\frac{1}{2}$	0	a°	67	56	St. Germain
Stiaes	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	0	0	0	0	38	48	Stiaes
Talbot	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1 2	1	$\frac{1}{2}$	1 1	1 1	100	83	Talbot
Templet Thibaut	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{a}{\frac{1}{2}}$	$\frac{a}{\frac{1}{2}}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	a- 1	$\frac{a}{\frac{1}{2}}$	$\frac{1}{4}$ $\frac{1}{4}$	$\frac{1}{4}$ $\frac{1}{4}$	38 100	66 88	Templet Thibaut
Thierry	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	0	a-	0	63	63	Thierry
Tucker	$\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$	a-	$\frac{1}{2}$	1 4	$\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \end{array}$	75	79	Tucker
Waddell White	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	1 1	$\frac{0}{\frac{1}{2}}$	$\frac{1}{4}$ $\frac{1}{4}$	$\frac{1}{4}$ $\frac{1}{4}$	88 100	80 77	Waddell White
Williams	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{\frac{2}{2}}{\frac{1}{2}}$	1	$\frac{\frac{1}{2}}{\frac{1}{2}}$	0	0	100 88	65	Williams
Willmott	$\frac{2}{\frac{1}{2}}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	1/4	56	52	Willmott
Wooton	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	63	63	Wooton
With LABI	77	94	94	100	76	68	60	68	Wit	h LABI	
Against LABI	21	1	0	0	16	26	34	20		inst LA	
Absent	5	8	9	3	11	9	9	15	Abs		(D)
Absent	3	ð	,	3	11	,	,	13	AUS	ciit	

a- Was absent when LABI needed a "yes" vote, or the motion required only a majority or supermajority of those present and voting.

a° Was absent when LABI needed a "no" vote and the motion required a majority or supermajority of the elected members.

HOUSE

		2008-2010 Cumulative			2008 - 2010 Cumulative
Party	Representatives	Voting %	Party	Representatives	Voting %
(R)	Katz	94	(D)	Hardy	72
(R)	Nowlin	92	(R)	Monica	71
(R)	Smiley	92	(D)	Billiot	70
(R)	Richardson	91	(D)	Gisclair	70
(D)	Chaney	89	(R)	Kleckley	70
(R)	Carmody	88	(D)	Baldone	68
(D)	Thibaut	88	(R)	Connick	68
(R)	McVea	87	(D)	Chandler	66
(R)	Schroder	87	(D)	Guillory	66
(R)	Burns, Henry	86	(R)	Guinn	66
(R)	Downs	86	(I)	Jackson, Michae	el 66
(R)	Ligi	86	(R)	Lambert	66
(I)	Robideaux	86	(R)	Templet	66
(R)	Foil	85	(D)	Fannin	65
(R)	Hoffmann	85	(D)	Williams	65
(R)	Morris	85	(D)	Arnold	64
(R)	Pope	85	(D)	Badon, Bobby	63
(R)	Smith, Jane	84	(D)	Ellington	63
(D)	Abramson	83	(D)	Montoucet	63
(D)	Barras	83	(D)	Thierry	63
(R)	Carter	83	(R)	Wooton	63
(R)	Cortez	83	(D)	Anders	62
(R)	Ponti	83	(R)	Hutter	61
(R)	Talbot	83	(R)	Harrison	59 50
(R)	LaBruzzo	82	(D)	Franklin	58
(R)	Landry Aubert	81 80	(D)	Leger	58 57
(D)	Hines	80 80	(D) (D)	Doerge Henderson	57
(D) (R)	Lorusso	80	(D) (D)	St. Germain	56
(R) (R)	Pugh	80	(D) (D)	Ritchie	55
(R) (R)	Waddell	80	(D)	Smith, Patricia	54
(R) (R)	Burford	79	(D)	Edwards	52
(R)	Burns, Tim	79	(R)	Willmott	52
(I)	Richard	79	(D)	Barrow	51
(R)	Tucker	79	(R)	Dove	49
(D)	Badon, Austin	78	(D)	Hill	49
(R)	Cromer	77	(D)	Armes	48
(R)	Hazel	77	(D)	Dixon	48
(R)	Henry	77	(D)	LeBas	48
(R)	White	77	(D)	Norton	48
(D)	Mills	76	(D)	Stiaes	48
(D)	Danahay	75	(D)	LaFonta	46
(R)	Howard	75	(D)	Roy	43
(R)	Little	75	(D)	Gallot	42
(R)	Pearson	75	(D)	Jackson, Girod	41
(R)	Perry	75	(D)	Johnson	41
(R)	Simon	75	(D)	Burrell	39
(D)	Jones, Sam	74	(D)	Smith, Gary	39
(R)	Champagne	73	(D)	Jones, Rosalind	
(R)	Lopinto	73	(D)	Richmond	38
(R)	Geymann	72 72	(D)	Brossett	25
(R)	Greene	72			

2010 Regular Legislative Session																
S					ý											S
E N	ıtion Fund.	ax.	nages.	SB 731 Attorney General Contingency Fee Attorneys. Final Passage	SB 731 A G Contingency Fee Attorneys. Adopt Conference Committee Report	HB 666 Local Sales Tax - Attorney Fees Final Passage	HB 667 Local Sales Tax - Arbitrary Assessments. Final Passage	Fax - Contract age	d Member assage	ed Teacher assage	State Retirement System Final Passage	State Retirement System Reconsideration	HB 1368 Red Tape Reduction Act. Fina Passage	age	ve Voting	F
A T	SB 1 Budget Stablization Fund. Final Passage	SB 432 Processing Tax. Final Passage	SB 547 Punitive Damages. Final Passage	1 Attorney Ger ttorneys. Final	1 A G Conting Conference C	HB 666 Local Sales Final Passage	HB 667 Local Sales Tax - Aı Assessments. Final Passage	HB 845 Local Sales Tax Auditors. Final Passage	HB 942 School Board Member Interference. Final Passage	HB 1033 Value-Added Tead Evaluations. Final Passage			68 Red Tape F ge	2010 Voting Percentage	2008-2010 Cumulative Voting Percentage	A T
E	SB 1 F	SB 432 Final P	SB 54 Final	SB 73 Fee At	SB 731 Adopt 6	HB 66 Final	HB 66 Assess	HB 84 Audit	HB 94 Interf	HB 10 Evalu	HB 1337 Reform.	HB 1337 Reform.	HB 1368 Passage	2010	2008-2 Percel	E
Adley Alario Amedee Appel	0 1 1 1	1 1 1	1 1 1	1 1 0 1	$ \begin{array}{c} \frac{1}{2} \\ 0 \\ 0 \\ \frac{1}{2} \end{array} $	$\frac{\frac{1}{2}}{\frac{1}{2}}$ a - $\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$ a - $\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$ a - $\frac{1}{2}$	1 1 1	$0 \\ \frac{1}{2} \\ 0 \\ \frac{1}{2}$	$0 \\ 0 \\ \frac{1}{4} \\ \frac{1}{4}$	0 1 4 1 4 1 4	a- ¹ / ₄ ¹ / ₄ ¹ / ₄	73 91 58 100	67 72 63 100	Adley Alario Amedee Appel
Broome Chabert	0	1	1	0	0	a-	$\frac{1}{2}$	a-	1	0	0 a-	$\frac{\frac{1}{4}}{4}$	0	39 55	49 55	Broome Chabert
Chaisson Cheek Claitor Crowe	0 0 1 0	1 1 1	1 1 1	0 1 0 0	$egin{array}{c} {\bf 0} \\ {1\over 2} \\ {\bf 0} \\ {\bf 0} \end{array}$	$\frac{\frac{1}{2}}{\mathbf{a}}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{\frac{1}{2}}{a}$ $\frac{1}{\frac{1}{2}}$ $\frac{1}{\frac{1}{2}}$	$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} $	a- 1 1	$ \frac{\frac{1}{2}}{0} $ $ \frac{\frac{1}{2}}{\frac{1}{2}} $	$0 \ \frac{1}{4} \ \frac{1}{4}$	$a-0$ $\frac{1}{4}$ $\frac{1}{4}$	$ \frac{\frac{1}{4}}{0} $ $ \frac{1}{4} $ $ \frac{1}{4} $	52 61 82 70	53 62 85 76	Chaisson Cheek Claitor Crowe
Donahue Dorsey Duplessis	0 0 0	1 0 1	1 0 1	1 a° 0	$\frac{\frac{1}{2}}{0}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$ \begin{array}{c} $	$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $	1 0 1	$\frac{\frac{1}{2}}{0}$	$\frac{\frac{1}{4}}{0}$	$\frac{\frac{1}{4}}{0}$	1/4 0 1/4 1/4	88 21 70	85 37 79	Donahue Dorsey Duplessis
Erdey Gautreaux, Butch Gautreaux, Nick	0 0 1	1 1 1	a° a° a°	1 0 0	$\frac{\frac{1}{2}}{0}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$ a-	0 0	0 0 0	$0 \\ \frac{1}{4} \\ 0$	$0 \\ \frac{1}{4} \\ \frac{1}{4}$	$\frac{\frac{1}{4}}{\frac{1}{4}}$	59 45 31	53 46 61	Erdey Gautreaux, Butch Gautreaux, Nick
Guillory Hebert Heitmeier	0 0 0	1 1 1	1 1 1	0 1 1	$ \begin{array}{c} 0 \\ \frac{1}{2} \\ 0 \end{array} $	$\frac{1}{2}$ a - $\frac{1}{2}$	$\frac{1}{2}$ a - $\frac{1}{2}$	$\frac{1}{2}$ a - $\frac{1}{2}$	1 1 1	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\frac{1}{4}$ 0	4 a- $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$	$\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{array}$	67 67 82	74 60 67	Guillory Hebert Heitmeier
Jackson Kostelka	0	0	1 1	0	0	$\frac{2}{\mathbf{a}}$	$\frac{2}{\mathbf{a}}$	$\begin{array}{c} 2\\ \frac{1}{2}\\ \frac{1}{2} \end{array}$	1 0	0 0	$\begin{array}{c} \frac{4}{1} \\ 0 \end{array}$	$\begin{array}{c} 4\\ \frac{1}{4}\\ \frac{1}{4} \end{array}$	0	36 45	53 65	Jackson Kostelka
LaFleur Long Marionneaux	0 0 0	a° 1 0	1 1 0	1 1 0	$0 \ \frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	a - ¹ / ₂ a -	a- 1 a-	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	0 ¹ / ₄ a-	0 1/4 a-	$\frac{\frac{1}{4}}{\frac{1}{4}}$	52 88 6		LaFleur Long Marionneaux
Martiny McPherson Michot	0 a° 0	1 0 1	1 a° a°	1 a° 0	$\frac{1}{2}$ $\frac{1}{2}$ 0	$\frac{\frac{1}{2}}{a}$	$\frac{1}{2}$	$\frac{1}{2}$	1 0 1	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	a- 0 a-	$\frac{1}{4}$ 0	$\frac{1}{4}$ 0 $\frac{1}{4}$	85 38 62	72 53 79	Martiny McPherson Michot
Morrell Morrish Mount	a° 0 0	a° 1 1	1 1 1	0 1 1	$0 \\ \frac{1}{2} \\ \frac{1}{2}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	0 0 1	$0 \\ 0 \\ \frac{1}{2}$	$\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{array}$	$\frac{1}{4}$	0 0 1 4	44 67 88	44 79 85	Morrell Morrish Mount
Murray Nevers Peterson	0 0 0	0 1 0	0 1 0	0 0 0	0 0 0	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	0 0 0	$ \begin{array}{c} 0 \\ \frac{1}{2} \\ 0 \end{array} $	0 a- 0	0 a- 0	$\frac{0}{\frac{1}{4}}$	18 52 12	35 66 27	Murray Nevers Peterson
Quinn Riser Shaw	0 1 0	1 1 1	1 1 1	0 1 0	$0 \\ \frac{1}{2} \\ 0$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 0	$\frac{\frac{1}{2}}{0}$	$\frac{\frac{1}{4}}{\frac{1}{4}}$	a- ¹ / ₄ 0	$\frac{\frac{1}{4}}{\frac{1}{4}}$	67 94 48	63 87 51	Quinn Riser Shaw
Smith Thompson Walsworth	0 0 1	1 1 1	1 1 1	1 0 1	$\frac{\frac{1}{2}}{0}$	$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	0 0 1	$0 \\ \frac{1}{2} \\ \frac{1}{2}$	$0 \\ 0 \\ \frac{1}{4}$	$\frac{\frac{1}{4}}{0}$	$\frac{\frac{1}{4}}{0}$	67 48 100	65 59 85	Smith Thompson Walsworth
With LABI Against LABI Absent	7 30 2	31 6 2	30 4 5	16 21 2	14 25 0	30 0 9	32 0 7	33 0 6	22 13 4	22 17 0	17 16 6	22 10 7	23 14 2	Ag	th La ainst sent	ABI LABI

a- Was absent when LABI needed a "yes" vote, or the motion required only a majority or supermajority of those present and voting.

a° Was absent when LABI needed a "no" vote and the motion required a majority or supermajority of the elected members.

SENATE

Party	Cu	08-2010 mulative oting %
(R)	Appel	100
(R)	Riser	87
(R)	Claitor	85
(R)	Donahue	85
(D)	Mount	85
(R)	Walsworth	85
(D)	Duplessis	79
(R)	Long	79
(R)	Michot	79
(R)	Morrish	79
(R)	Crowe	76
(D)	Guillory	74
(D)	Alario	72
(R)	Martiny	72
(R)	Adley	67
(D)	Heitmeier	67
(D)	Nevers	66
(R)	Kostelka	65
(D)	Smith	65
(D)	Amedee	63
(R)	Quinn	63
(R)	Cheek	62
(D)	Gautreaux, Nick	61
(I)	Hebert	60
(D)	Thompson	59
(D)	Chabert	55
(D)	Chaisson	53
(R)	Erdey	53
(D)	Jackson	53
(D)	LaFleur	53
(D)	McPherson	53 51
(R)	Shaw	
(D)	Broome	49 46
(D)	Gautreaux, Butch Morrell	46 44
(D)		37
(D) (D)	Dorsey Murray	35
	Marionneaux	33 27
(D) (D)	Peterson	27
(D)	1 (1(15011	41